k-means vs. GMM

Comparison of k-means and GMM iterations for the clustering of a set of data points, $\{\mathbf{x_n}\}_{n=1}^{N}$.

	k-means	GMMs
Init:	Select K cluster centers $(\mathbf{m_1^{(1)}}, \dots, \mathbf{m_K^{(1)}})$	K components with means, μ_k and covariance Σ_k and mixing coefficients, P_k
E-step:	Allocate datapoints to clusters $S_i^{(t)} = \{ \mathbf{x}_{\mathbf{p}} : \mathbf{x}_{\mathbf{p}} - \mathbf{m}_{\mathbf{i}}^{(t)} ^2 \leq \mathbf{x}_{\mathbf{p}} - \mathbf{m}_{\mathbf{j}}^{(t)} ^2 \forall \mathbf{j} \}$	Update probability that component, k , generated the data point $\mathbf{x_n}$: $\gamma_{nk} = \frac{P_k \mathcal{N}(\mathbf{x_n} \mu_k, \mathbf{\Sigma_k})}{\sum_{j=1}^{K} P_j \mathcal{N}(\mathbf{x_n} \mu_j, \mathbf{\Sigma_j})}$
M-step:	Re-estimate cluster centers: $\mathbf{m}_{i}^{(t+1)} = \frac{1}{ \mathbf{S}_{i}^{(t)} } \sum_{\mathbf{x_{j}} \in \mathbf{S}_{i}^{(t)}} \mathbf{x_{j}}$	Calculating the estimated number of cluster members, N_k , means, μ_k and covariance Σ_k and mixing coeffi- cients, P_k . $N_k = \sum_{n=1}^N \gamma_{nk}$, $\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x_n}$, $\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x_n} - \mu_k^{new}) (\mathbf{x_n} - \mu_k^{new})^{\mathrm{T}}$, $P_k^{new} = \frac{N_k}{N}$,
Stop:	Based on no differences in set allocation.	When the likelihood not increasing fast enough: $\ln \Pr(\mathbf{x} \mu, \boldsymbol{\Sigma}, \mathbf{P}) = \sum_{n=1}^{N} \ln\{\sum_{k=1}^{K} \mathbf{P}_{k} \mathcal{N}(\mathbf{x}_{n} \mu_{k}, \boldsymbol{\Sigma}_{k})\}$